Design and optimization of thermo-mechanical reliability in wafer level packaging

نویسندگان

  • X. J. Fan
  • B. Varia
  • Q. Han
چکیده

Article history: Received 4 July 2009 Received in revised form 16 November 2009 Available online 29 January 2010 0026-2714/$ see front matter 2009 Elsevier Ltd. A doi:10.1016/j.microrel.2009.11.010 * Corresponding author. Address: Department of M University, P.O. Box 10028, Beaumont, TX 77710, USA +1 409 880 8121. E-mail address: [email protected] (X.J. Fan). In this paper, a variety of wafer level packaging (WLP) structures, including both fan-in and fan-out WLPs, are investigated for solder joint thermo-mechanical reliability performance, from a structural design point of view. The effects of redistribution layer (RDL), bump structural design/material selection, polymer-cored ball application, and PCB design/material selection are studied. The investigation focuses on four different WLP technologies: standard WLP (ball on I/O WLP), ball on polymer WLP without under bump metallurgy (UBM) layer, ball on polymer WLP with UBM layer, and encapsulated copper post WLP. Ball on I/O WLP, in which solder balls are directly attached to the metal pads on silicon wafer, is used as a benchmark for the analysis. 3-D finite element modeling is performed to investigate the effects of WLP structures, UBM layer, polymer film material properties (in ball on polymer WLP), and encapsulated epoxy material properties (in copper post WLP). Both ball on polymer and copper post WLPs have shown great reliability improvement in thermal cycling. For ball on polymer WLP structures, polymer film between silicon and solder balls creates a ‘cushion’ effect to reduce the stresses in solder joints. Such cushion effect can be achieved either by an extremely compliant film or a ‘hard’ film with a large coefficient of thermal expansion. Encapsulated copper post WLP shows the best thermo-mechanical performance among the four WLP structures. Furthermore, for a fan-out WLP, it has been found that the critical solder balls are the outermost solder balls under die-area, where the maximum thermal mismatch takes place. In a fan-out WLP package, chip size, other than package size, determines the limit of solder joint reliability. This paper also discusses the polymer-cored solder ball applications to enhance thermo-mechanical reliability of solder joints. Finally, both experimental and finite element analysis have demonstrated that making corner balls non-electrically connected can greatly improve the WLP thermomechanical reliability. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Wafer Level Underfill on the Microbump Reliability of Ultrathin-Chip Stacking Type 3D-IC Assembly during Thermal Cycling Tests

The microbump (μ-bump) reliability of 3D integrated circuit (3D-IC) packaging must be enhanced, in consideration of the multi-chip assembly, during temperature cycling tests (TCT). This research proposes vehicle fabrications, experimental implements, and a nonlinear finite element analysis to systematically investigate the assembled packaging architecture that stacks four thin chips through the...

متن کامل

THERMO-MECHANICAL DESIGN OPTIMIZATION OF CORDIERITE–MULLITE BASED KILN FURNITURE

Abstract: Cordierite-Mullite based kiln furnitures are widely used in fast-firing of ceramic products because of their low thermal expansion which confer them a very good ability to thermal shock resistance. Difference in CTE of constituent phase can develop damage during thermal cycling due to internal stresses. Increase in industrial competitiveness leads to the development of new means for e...

متن کامل

Micro to Macro Thermo - Mechanical Simulation of Wafer Level Packaging

Due to the CPU limitation of the computer hardware currently available, the threedimensional full-scaled finite element model of wafer level packaging is impractical for the reliability analysis and fatigue life prediction. In order to significantly reduce the simulation CPU time, an equivalent beam method based on the micro-macro technique with multi-point constraint method is proposed in the ...

متن کامل

A three-scale approach to the numerical simulation of metallic bonding for MEMS packaging

In this work we present a numerical, multi-scale approach to estimate the strength of a wafer-to-wafer metallic thermo-compression bonding. Following a top-down approach, the mechanical problem is handled at three different length scales. Taking into account control variables such as temperature, overall applied force over the wafer and contact surface roughness, it is shown that the proposed a...

متن کامل

Parametric Design and Reliability Analysis of Wire Interconnect Technology Wafer Level Packaging

The demands for electronic packages with lower profile, lighter weight, and higher input/ output (I/O) density have led to rapid expansion in flip chip, chip scale package (CSP) and wafer level packaging (WLP) technologies. The urgent demand high I/O density and good reliability characteristics have led to the evolution of ultra high-density non-solder interconnection, such as wire interconnect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microelectronics Reliability

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2010